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DS de mathématiques n°4

Intégrales, ED, nombres réels, suites —
Corrigé

Noté sur 108 pts +5 pts pour le soin et la clarté,
puis la note est ramené sur 20 en multipliant par 20/95.

1 Pour s’échauffer

Les questions principales de cet exercice (i.e. 1), 2), etc.) sont indépen-
dantes.

1) a) Mettre 1 + ¢ sous forme exponentielle puis résoudre 'équation
22 =1+ d'inconnue z € C, en exprimant les solutions sous
forme exponentielle.

1+7:—\/§<\f+\f7:)

= \/i (cosg +1 sing)
- [vacs

ool

1 1
_ . R 1
Or, les solutions de 22 = v/2¢' T sont v2%e'5 et —v/2%¢
1
5 ;T . .
V2% 5e'™. On en déduit que

S{J:MQVQ%W}

b) Résoudre a nouveau I'équation 2> = 1+i par une autre méthode,
qui permet d’exprimer les solutions sous forme algébrique.

On pose z = a4 ib avec a,b € R. Alors 22 = 1+ si et
seulement si :

Re(z%) =1 a> =0 =1
Im(2?) =1 2ab =1
2P =11+ |a®+0=V2
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et b=

On en déduit que a =

V2 -1 V2 -1
\[2 oub=— \[2 . Or, comme ab > 0, on sait que

a et b ont méme signe. Dés lors :

[1+v2 . [V2-1 1+v2 . [V2-1
S = 5 +1 5 , \/ 5 z\/ 5

¢) En déduire la valeur de cos (g)
On pose zp = \/ V2¢'%. On a Rezg = \/ V2 cos g Il reste a
calculer Re zp. Or, zy est une solution de 22> = 1 +4 par la
1 2
question a). Par la question b), on a donc Re zy = +2\[
1 2
ouRezy = — +2\[. Or, la fonction cosinus est positive sur
[0, g] donc cos (g) > 0. Ainsi, on a nécessairement Re zy > 0
/ 1 2
done \/ V2 cos (g) = +2\[. On en déduit :
<7r) 1 1++/2
cos (=) = —
8 VV2 2
L 1y
V2 2
| [V2+2
- 4
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2) Déterminer les fonctions y : R — C qui vérifient :

y//_4y/+4y:1+62iz

1 1. .,
1,5 pour yg ; 1 pour ypy(x) = Z 2,5 pour yp(x) = gz el g

pour le principe de superposition et la conclusion.

— Onrésout By 1 y" —4y +4y = 0. L’équation caractéristique
est 12 —4r4+4 =0, ie (r—2)%>=0. 11y a donc une racine
double qui vaut 2. (Comme K = C), les solutions de Ep sont
les fonctions :

yr(z) = (A + Bz)e* avec A, B € C
— On cherche une solution particuliere de E': 3" — 4y + 4y =
1+ ¢*. On pose
B oy =4y +4y=1
Ezi y//_4y/+4y:€2iz
1
— La fonction y, (z) = 1 est solution particuliere évidente de
E.

— On pose yp(z) = Ce** avec C' € C. Alors

Yro(x) =20 Ce*”

ygg(x) _ _4062/2:1:

d’ou
UZQ - 4,7};,2 + 4yp2 = 6%:"
= — 40T — 8i Ce¥® 4 4Ce¥ T = 7
— —8iC=1
-1 1
81 8
de sorte que ypo(z) = g’ 2T

Finalement, une solution particuliére de E est donnée par

Yp(r) = yp1 (2) + ypo(z) = 4 + g el

Les solutions de E sont donc les fonctions :

11 5, ,
y(@) =+ i+ (A4 B)e  avee A BEC
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3) Soit @ > 0. On note (uy)nen- la suite de terme général
u, = (14+a) x (1 +a?) x...x (1+a")
a) Montrer que la suite (u,)en- est strictement croissante.

Soit n € N*. On remarque que u, > 0 en tant que produit de
termes strictement positifs. Or,

Unt1 _ 14 a"t!
un
Up+1 .
Comme a > 0, on a a”" > 0 de sorte que —— > 1. Par suite,

n

(u,,) est strictement croissante.

b) Montrer que si a > 1, alors u,, > 2". En déduire la limite de la
suite (up)nen+

On suppose a > 1. Alors pour tout k € N*, on a a* > 1, de
sorte que
1+d">2

En faisant le produit terme a terme de ces inégalités pour
k allant de 1 & n (ce qui est licite car tous les termes sont
positifs), on en déduit que

1 n
>
(I+a)x...x(14+a")>2x%x...x2

n fois

donc u, > 2". Or, 2" — +o0. Par comparaison, u, — +00.

¢) Montrer que pour tout réel z, on a 14+ x < e”.

On pose [ : x — e’ —x — 1. 1l suffit de montrer que f
est positive sur R. f est dérivable comme différence de telles
fonctions et pour tout réel z, f/(z) = ¢ — 1. Ainsi,

On obtient donc le tableau suivant :

T —00 010 + o0
['(@) - +
f(x) o 0o/

(Les limites en +oo sont facultatives, on ne s’en servira pas
ici). On constate que f est positive d’aprés le tableau de va-

riations. Donc |e* > x + 1
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d) On suppose 0 < a < 1. En utilisant la question précédente,
montrer que la suite (u,) converge.

. P ~ k
Pour tout k € N*, on a par ce qui précede, 1+ a* < ¢*. En
faisant le produit terme a terme de ces inégalités pour k allant
de 1 & n, on obtient

n

9 1
(1+a')x...x(14+a")<e® x...xe"
2 Uy S 6al+...+a"’
— u, < k=1 4"

Or, comme a # 1

=

' 1—a"
at =
1—a
k=1
1—ad"
et comme 0 < a < 1, on a a" < a, de sorte que
—a
n
1—a . i . ,
1 = 1. Par suite, E a” < a, et par croissance de 'expo-
—a
. k=1
nentielle,
Uy, S el

On en conclut que (u,) est majorée par e’. Comme cette suite
est croissante par la question a), elle est convergente.

2 Une équation d’ordre 2 a coefficients non
constants

On cherche les solutions y : R — R de I'équation différentielle :
(E): (2*+ 1)y —2y=0

1) a) Déterminer une primitive de la fonction f: R — R définie par :

t2
t) = ——=
0=y
t? t
On pourra remarquer que, pour tout t € R, m = B X
2t
(L4122
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b) En déduire une primitive de la fonction g : R — R définie par :

1

g(t) = a+ey

/6

[ owa=[
/z +1L2_212
1+H o
:/ 1+t2 /j t)dt

=arctany + ———— — — alctan x
%1+ 22

v 1
B m + B arctan x

2) Déterminer une solution de (E) sous la forme d’un polynéme de degré
/3 2 (non nul), que 'on notera yg.

On pose yo(z) = az® + bx + c avec a,b,c € R, et a # 0 pour que
Yo soit bien de degré 2.

{yé(x) =2ax +b

Yo (w) = 2a
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De sorte que

(@ +1)y" —2y=0
= (22 +1) x 2a —2(az® + bz +¢) = 0
= (2a — 2a)2* + (—2b)x + (2a — 2¢) = 0
— —br+(a—c)=0

Par identification, cela revient &

—-b=0 b=0
a—c=0 a=c

On trouve alors que nécessairement yo(z) = ax® 4+ a. On peut par
exemple prendre a = 1, de sorte que |y(2) = 2% 4 1| convient.

3) Soit y : R — R une fonction deux fois dérivable. On pose YV : z —
y(x)
Yo()
est solution de (F) si et seulement si z est solution de I'équation
différentielle

. En écrivant y = 30Y et en posant z = Y’', montrer que y

4x
(E/) : Z/ + 1‘2——5—1Z =0

On a

"

(* +1)y" =2y =0
= (2 + D) (yY) — 25Y =0
= (@ +1) [yY +wY'] = 2yY =0
= (2®+ 1) (Y)Y +2yY" +yY") — 2yY =0
= (2 +1) (2Y +2(22)Y" + (2* + 1)Y”) —2(2" + 1)Y =0
= 22DV +da(a® + DY + (2° + 1)V = 22 +T1)V =0

= dr(@? + Dz + (22 +1)%' =0

4
<:>Z/+/ T =0

241

4) En déduire 'ensemble des solutions de (E).

Résolvons (E'). L'intervalle d’étude est R. Une primitive de =

e jc_ 7 est x — 2In(z* + 1). Les solutions de (E') sont donc les
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fonctions de la forme

C
Z(I) = Celen(xZH) = m avec C S R
Ainsi, Y est une primitive de z, donc on en déduit par la question
1)b) que
Cx C
Y(x) = ] +o arctanz + D  avec C,D € R

Enfin, par la question précédente les solutions de (E) sont les fonc-
tions de la forme Y, i.e.

C C
y(r) = (2* +1) x ﬁ + 5 arctanx + D
Cx C .
= 713 + 5(3"2 + 1) arctanz + D(2* + 1) avec C, D € R

C e
On notera qu’en posant A = o> on peut encore simplifier cela

(lorsque C' parcourt R, A parcourt R également et vice versa) :

y(r) = Az + A(z® + 1) arctanx + D(2 + 1) avec A, D € R

3 Suites Djadjacentes

Soit (¢n)nen la suite définie par ¢ = 0 et pour tout n € N, ¢,41 =

1+c,
1/—2 .

T
/6 1) Montrer que pour tout n € N, ¢, = cos (W>
Démontrons ce résultat par récurrence sur n € N.

— Sin =0, alors

T
(:0:0:(3055:(:05%

donc le résultat est vrai au rang 0.

Soit n € N. Supposons que ¢, = cos( ) Montrons que

T
2n+1
cette propriété est vraie au rang n + 1. Par définition de (¢,),

1 + Cn _ 1+ cos (55+) 2 B
Cn+1 = cos 271+1 27L+2
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T ™ T
Or, oni2 € {O, 5] donc cos (W) > 0. Ainsi, ¢,y1 =
cos 2n+2). Le résultat est donc vrai au rang n + 1.

Ainsi, le résultat est vrai pour tout n € N.

On considére les suites (Sp)nen et (Th)nen+ définies par les relations
suivantes, pour tout n € N* :

S, S,
Sp=2 S,=2t1 o T, =22
C’!L CTL

2) Montrer que les suites (S,,)nen et (T},)nen+ sont adjacentes. Que peut-
/11 on en déduire ?

1,5 pour justifier que S,,T, > 0 si on s’en sert pour obtenir les
sens de variations de (S,) et (T,,); 3 pour montrer que (S,) est
croissante ; 3 pour montrer que (T,) est décroissante; 3,5 pour
montrer que S, — T,, — 0 et pour conclure.

Soit n € N*. Par la question 1,

™
Cn = COS 271,+1

et comme € }0, g [, on a ¢, €]0,1[. En particulier, (S,)nen

77
on+1
et (T},)n>1 sont bien définies. Comme Sy > 0 et ¢, > 0, on montre
par récurrence immeédiate que S, > 0, et de méme que 7, > 0.

Pour tout n € N*,

S 1
S . >1 car ¢, €0, 1]

donc la suite (S,),en est croissante. Par ailleurs,

Sni1

Tn,+1 Gl Srz,+1 « Cp, o 1 « Cp,
=5 = Il _n
T, o Sh Cn+1 Cnt1 Cn+1
n
1+c
2 n .
Or, ¢, = , donc
Tn+l o Cn
T 14c,
T, Ta
Cn Tt

> ¢y, si bien que < 1. Dot la

Comme ¢, < 1, on a

n
suite (7},),>1 est décroissante.
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Enfin, montrons que S, — T}, — 0. Pour tout n € N*,
Sn*Tn :/Tn(cnfl)

D’une part, comme — 0, on a par continuité de cos que

n+1
¢, — 1, si bien que 07127 1 — 0. D’autre part, (7},) est décroissante
et positive donc 0 < T, < Tj : la suite (T},) est bornée. Ainsi,
To(¢, —1) = 0. On a donc bien montré que les suites (S,,) et (75,)
sont adjacentes.

On en déduit qu’elles convergent vers la méme limite.

/6 3) Montrer que pour tout n € N, S, = 2""'sin (27:_1)

Montrons le résultat par récurrence sur n € N.

— Pour n =0, c¢’est clair car

Sy =2
?“m%ll):%mgzz

20+1

— Soit n € N. On suppose le résultat vrai au rang n. Montrons-le
au rang n + 1. Par définition de (S,,),

S n

Cn+1
1

cos (57)
_ 1 n+1 _: ( 7T )
= 7008 (Tﬂ”) X 2 sin (2 x nia

Sn+1 =

T
n+1 .z
X 2" sin (27l+1)

1 T 0
L (1) s ()
oS (QTT:-Z) on+2 on+2

Donc le résultat est vrai au rang n + 1.

™
) pour tout n € N.

Finalement, on a S,, = 2"*!sin
' 2n+1

4) En utilisant le fait (admis) que liné T 1, en déduire la limite de
r— T
/5 (Sn)-
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T . sinzx " .
Comme —— — 0 et lim = 1, on a par composition de li-
) 2n+l =0 T
mites : ( )
sin (52
i B
2n+l

ce qui équivaut a

1 s
g
;2" sin <2n+1> —1

1
-5, —1
Y

L 1
Ainsi, 7 x ;S,l — 7T, OU encore .
4 Densité de Z[v/2] dans R

On note D I'ensemble des nombres réels de la forme p+¢v/2 avec p, q € Z
(cet ensemble se note aussi Z[v/2] mais on le notera D dorénavant).
L’objectif de cet exercice est de montrer que D est dense dans R.

ou encore

1) Montrer que pour tous z,y € D, les nombres z + y, z — y et xy sont
éléments de D.

Soit 2,y € D. Alors il existe p1, 1, p2, @2 € Z tels que z = p1+q1 V2
et y = po + q2V/2. Dans ce cas,
z4y=(p+p)+(n+q@) V2
—_—— —
€Z €7

donc z 4+ y € D. On montre de méme que z —y € D. Enfin,

zy = pip2 + 2015 +V2 X (p1g2 + 2t

~—
€Z €L

donc zy € D.

2) Soit u = V2 — 1. Montrer que pour tout n € N, on a u" € D.

—Sin=0alossu"=1=14+0V/2€ D
— Sin > 1, alors on remarque que v € D et comme le produit
d’éléments de D est encore dans D, alors u" = u X ... X u est
—_—

n fois

dans D.

3) Soit a,b € R tels que a < b. Montrer qu'il existe N € N tel que
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0<u¥ <b—a.

Montrons que 0 < u < 1. Le fait que v > 0 est évident. De plus,
par stricte croissance de @ +— v/, on a :

U<l &= V2<2 &= V2<V4

Dot 0 < u < 1. En particulier, u" ——— 0. Ainsi, par définition
n—-+00

de la limite, en prenant ¢ = b —a > 0, il existe N € N tel que
luM — 0| < & =b—a. Commeu >0, on aaussi " > 0, de sorte
que I'on a bien 0 < v = |u™| < b — a.

4) Montrer que 'ensemble X = {k ez } a < kuN} admet un plus petit
élément, qu’on notera m.
X est une partie de Z. 1l suffit donc de montrer que X est non vide
et minorée pour conclure.
Pour tout k € X, on a ku™ > a et donc, comme vV > 0, on a

a . . a
k > —. Ainsi, X est minorée par —.
ul ulN

. a
— Montrons que X est non vide. On remarque que k = {—\J +1
u?

est bien un entier et vérifie bien k > ce qui équivaut a

1\]’ b
u
ku®™ > a. Donc k € X, qui est ainsi non vide.

Finalement, X posséde bien un plus petit élément.

5) Montrer que a < mu” < b.

Par ce qui précede, m € X, de sorte que a < mu®. Supposons par
I'absurde que mu™ > b. Alors on a

b < mu b < mu N
N y = a<(m—1luw
b—a>u a—b< —u

par somme. Or, cela implique que m — 1 € X. Contradiction car

m est le plus petit élément de X. Finalement, on a bien mu’Y < b.
D’ou le résultat.

6) Conclure.

Comme v € D et que D est stable par somme ou différence, on
a mu” € D. Ainsi, on a montré que tout intervalle Ja,b[ de R
contient au moins un élément de D. On en déduit que D est dense

dans R.
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5 Une primitive prohibitive

Soit f : & +— Inz. Pour tout n € N, on note f" la fonction fo fo...o f,
—_—
n fois
avec la convention f¥ = idg: . Déterminer une primitive de la fonction

1

T
I @) x @) x ... % (@)
/12
Montrons par récurrence sur n que (f"*) = ! (On
FOx flx...ox fr
rappelle que f"*! =nolno...oln).
n+1 fois
p 0 fout > 0, g(z) = —— = ~ ot fi(a)
our n = 0, on a pour tout x > 0, g(z) = =—ct f'(z)=
: p g EORE:
In z, le résultat est évident.
1
— Soit n € N. On suppose que (f"1) = I fix X Mon-
, 1 S
trons que (f"*?) = La fonction ">

Oxfl X ><f”><f”+l.

est dérivable par composée de telles fonctions et
(fn+2)/ _ (f ° fn+l)/

_ (f/ o f7z+l) % (f72+l)/

Or, f" est la fonction inverse. Si on applique en plus I'hypothése
de récurrence, on obtient :

(fn+2)/ _ (f ° fn+1)/
1 1

:fnJrle()Xle'”an
1

:f(lelx'uxfnxf'mrl

La propriété est donc vraie au rang n + 1.

1
T X fIx . x

Finalement, on a bien montré que (f"™)
Ainsi, la primitive recherchée est .

Note : en réalité, la récurrence n’est pas nécessaire, un raisonnement
direct aurait permis de conclure. Mais la récurrence permet de voir

que cela fonctionne pour n = 0, au moins.
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