
DS de mathématiques n°4
Intégrales, ED, nombres réels, suites –

Corrigé

Noté sur 108 pts ±5 pts pour le soin et la clarté,
puis la note est ramené sur 20 en multipliant par 20/95.

1 Pour s’échauffer
Les questions principales de cet exercice (i.e. 1), 2), etc.) sont indépen-
dantes.

1) a) Mettre 1 + i sous forme exponentielle puis résoudre l’équation
z2 = 1 + i d’inconnue z ∈ C, en exprimant les solutions sous
forme exponentielle./2

1 + i =
√
2

(√
2

2
+

√
2

2
i

)
=

√
2
(
cos

π

4
+ i sin

π

4

)
=

√
2ei

π
4

Or, les solutions de z2 =
√
2ei

π
4 sont

√
2

1
2ei

π
8 et −

√
2

1
2ei

π
8 =√

2
1
2ei

π
8 ei π. On en déduit que

S =

{√√
2ei

π
8 ,

√√
2ei

9π
8

}

b) Résoudre à nouveau l’équation z2 = 1+i par une autre méthode,
qui permet d’exprimer les solutions sous forme algébrique./3,5

On pose z = a + i b avec a, b ∈ R. Alors z2 = 1 + i si et
seulement si :

Re(z2) = 1

Im(z2) = 1

|z|2 = |1 + i |


a2 − b2 = 1

2ab = 1

a2 + b2 =
√
2
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
2a2 = 1 +

√
2

2b2 =
√
2− 1

2ab = 1


a2 =

1 +
√
2

2

b2 =

√
2− 1

2
2ab = 1

On en déduit que a =

√
1 +

√
2

2
ou a = −

√
1 +

√
2

2
et b =√√

2− 1

2
ou b = −

√√
2− 1

2
. Or, comme ab > 0, on sait que

a et b ont même signe. Dès lors :

S =


√

1 +
√
2

2
+ i

√√
2− 1

2
, −

√
1 +

√
2

2
− i

√√
2− 1

2


c) En déduire la valeur de cos

(π
8

)
./2,5

On pose z0 =

√√
2ei

π
8 . On a Re z0 =

√√
2 cos

π

8
. Il reste à

calculer Re z0. Or, z0 est une solution de z2 = 1 + i par la

question a). Par la question b), on a donc Re z0 =

√
1 +

√
2

2

ou Re z0 = −

√
1 +

√
2

2
. Or, la fonction cosinus est positive sur

[0,
π

2
] donc cos

(π
8

)
≥ 0. Ainsi, on a nécessairement Re z0 ≥ 0

donc
√√

2 cos
(π
8

)
=

√
1 +

√
2

2
. On en déduit :

cos
(π
8

)
=

1√√
2

√
1 +

√
2

2

=

√
1√
2
× 1 +

√
2

2

=

√√
2 + 2

4
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2) Déterminer les fonctions y : R → C qui vérifient :

y′′ − 4y′ + 4y = 1 + e2i x

/6

1,5 pour yH ; 1 pour yp1(x) =
1

4
; 2,5 pour yp2(x) =

1

8
i ei 2x ; 1

pour le principe de superposition et la conclusion.

— On résout EH : y′′−4y′+4y = 0. L’équation caractéristique
est r2 − 4r + 4 = 0, i.e. (r − 2)2 = 0. Il y a donc une racine
double qui vaut 2. (Comme K = C), les solutions de EH sont
les fonctions :

yH(x) = (A+Bx)e2x avec A,B ∈ C

— On cherche une solution particulière de E : y′′ − 4y′ + 4y =
1 + e2i x. On pose

E1 : y′′ − 4y′ + 4y = 1

E2 : y′′ − 4y′ + 4y = e2i x

— La fonction yp1(x) =
1

4
est solution particulière évidente de

E1.
— On pose yp2(x) = Ce2i x avec C ∈ C. Alors{

y′p2(x) = 2i Ce2i x

y′′p2(x) = −4Ce2i x

d’où

y′′p2 − 4y′p2 + 4yp2 = e2i x

⇐⇒ − 4Ce2i x − 8i Ce2i x + 4Ce2i x = e2i x

⇐⇒ − 8i C = 1

⇐⇒ C =
−1

8i
=

1

8
i

de sorte que yp2(x) =
1

8
i e2i x.

Finalement, une solution particulière de E est donnée par

yp(x) = yp1(x) + yp2(x) =
1

4
+

1

8
i e2i x

Les solutions de E sont donc les fonctions :

y(x) =
1

4
+

1

8
i e2i x + (A+Bx)e2x avec A,B ∈ C
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3) Soit a > 0. On note (un)n∈N∗ la suite de terme général

un = (1 + a)× (1 + a2)× . . .× (1 + an)

a) Montrer que la suite (un)n∈N∗ est strictement croissante./2,5

Soit n ∈ N∗. On remarque que un > 0 en tant que produit de
termes strictement positifs. Or,

un+1

un
= 1 + an+1

Comme a > 0, on a an > 0 de sorte que
un+1

un
> 1. Par suite,

(un) est strictement croissante.

b) Montrer que si a ≥ 1, alors un ≥ 2n. En déduire la limite de la
suite (un)n∈N∗./2,5

On suppose a ≥ 1. Alors pour tout k ∈ N∗, on a ak ≥ 1, de
sorte que

1 + ak ≥ 2

En faisant le produit terme à terme de ces inégalités pour
k allant de 1 à n (ce qui est licite car tous les termes sont
positifs), on en déduit que

(1 + a1)× . . .× (1 + an) ≥ 2× . . .× 2︸ ︷︷ ︸
n fois

donc un ≥ 2n. Or, 2n → +∞. Par comparaison, un → +∞.

c) Montrer que pour tout réel x, on a 1 + x ≤ ex./2

On pose f : x 7→ ex − x − 1. Il suffit de montrer que f
est positive sur R. f est dérivable comme différence de telles
fonctions et pour tout réel x, f ′(x) = ex − 1. Ainsi,

f ′(x) > 0 ⇐⇒ ex > 1 ⇐⇒ x > 0 par stricte croissance de ln

On obtient donc le tableau suivant :

x −∞ 0 0 +∞
f ′(x) − +
f(x) ↘0 0 ↗

(Les limites en ±∞ sont facultatives, on ne s’en servira pas
ici). On constate que f est positive d’après le tableau de va-
riations. Donc ex ≥ x+ 1

G. Peltier – MPSI, Lycée Alain Fournier 4 / 13



d) On suppose 0 < a < 1. En utilisant la question précédente,
montrer que la suite (un) converge./5

Pour tout k ∈ N∗, on a par ce qui précède, 1 + ak ≤ ea
k

. En
faisant le produit terme à terme de ces inégalités pour k allant
de 1 à n, on obtient

(1 + a1)× . . .× (1 + an) ≤ ea
1 × . . .× ea

n

⇐⇒ un ≤ ea
1+...+an

⇐⇒ un ≤ e
∑n

k=1 a
k

Or, comme a ̸= 1

n∑
k=1

ak = a× 1− an

1− a

et comme 0 < a < 1, on a an < a, de sorte que
1− an

1− a
≤

1− a

1− a
= 1. Par suite,

n∑
k=1

ak ≤ a, et par croissance de l’expo-

nentielle,
un ≤ ea

On en conclut que (un) est majorée par ea. Comme cette suite
est croissante par la question a), elle est convergente.

2 Une équation d’ordre 2 à coefficients non
constants

On cherche les solutions y : R → R de l’équation différentielle :

(E) : (x2 + 1)y′′ − 2y = 0

1) a) Déterminer une primitive de la fonction f : R → R définie par :

f(t) =
t2

(1 + t2)2

On pourra remarquer que, pour tout t ∈ R,
t2

(1 + t2)2
=

t

2
×

2t

(1 + t2)2
./3
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∫ x

f(t)dt =

∫ x t

2
× 2t

(1 + t2)2
dt

=

[
t

2
×
(
− 1

1 + t2

)]x
−
∫ x 1

2
×
(
− 1

1 + t2

)
dt

= − x

2(1 + x2)
+

1

2

∫ x 1

1 + t2
dt

= − x

2(1 + x2)
+

1

2
arctan x

b) En déduire une primitive de la fonction g : R → R définie par :

g(t) =
1

(1 + t2)2

/6

∫ x

g(t)dt =

∫ x 1

(1 + t2)2
dt

=

∫ x 1 + t2 − t2

(1 + t2)2
dt

=

∫ x 1

1 + t2
dt−

∫ x

f(t)dt

= arctanx+
x

2(1 + x2)
− 1

2
arctan x

=
x

2(1 + x2)
+

1

2
arctan x

2) Déterminer une solution de (E) sous la forme d’un polynôme de degré
2 (non nul), que l’on notera y0./3

On pose y0(x) = ax2 + bx + c avec a, b, c ∈ R, et a ̸= 0 pour que
y0 soit bien de degré 2.{

y′0(x) = 2ax+ b

y′′0(x) = 2a
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De sorte que

(x2 + 1)y′′ − 2y = 0

⇐⇒ (x2 + 1)× 2a− 2(ax2 + bx+ c) = 0

⇐⇒ (2a− 2a)x2 + (−2b)x+ (2a− 2c) = 0

⇐⇒ − bx+ (a− c) = 0

Par identification, cela revient à{
−b = 0

a− c = 0

{
b = 0

a = c

On trouve alors que nécessairement y0(x) = ax2 + a. On peut par
exemple prendre a = 1, de sorte que y0(x) = x2 + 1 convient.

3) Soit y : R → R une fonction deux fois dérivable. On pose Y : x 7→
y(x)

y0(x)
. En écrivant y = y0Y et en posant z = Y ′, montrer que y

est solution de (E) si et seulement si z est solution de l’équation
différentielle

(E ′) : z′ +
4x

x2 + 1
z = 0

/5

On a

(x2 + 1)y′′ − 2y = 0

⇐⇒ (x2 + 1)(y0Y )′′ − 2y0Y = 0

⇐⇒ (x2 + 1) [y′0Y + y0Y
′]
′ − 2y0Y = 0

⇐⇒ (x2 + 1) (y′′0Y + 2y′0Y
′ + y0Y

′′)− 2y0Y = 0

⇐⇒ (x2 + 1)
(
2Y + 2(2x)Y ′ + (x2 + 1)Y ′′)− 2(x2 + 1)Y = 0

⇐⇒ �������
2(x2 + 1)Y + 4x(x2 + 1)Y ′ + (x2 + 1)2Y ′′ −�������

2(x2 + 1)Y = 0

⇐⇒ 4x(x2 + 1)z + (x2 + 1)2z′ = 0

⇐⇒ z′ +
4x

x2 + 1
z = 0

4) En déduire l’ensemble des solutions de (E)./5

Résolvons (E ′). L’intervalle d’étude est R. Une primitive de x 7→
4x

x2 + 1
est x 7→ 2 ln(x2 + 1). Les solutions de (E ′) sont donc les
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fonctions de la forme

z(x) = Ce−2 ln(x2+1) =
C

(x2 + 1)2
avec C ∈ R

Ainsi, Y est une primitive de z, donc on en déduit par la question
1)b) que

Y (x) =
Cx

2(1 + x2)
+

C

2
arctan x+D avec C,D ∈ R

Enfin, par la question précédente les solutions de (E) sont les fonc-
tions de la forme y0Y , i.e.

y(x) = (x2 + 1)×
[

Cx

2(1 + x2)
+

C

2
arctan x+D

]
=

Cx

2
+

C

2
(x2 + 1) arctanx+D(x2 + 1) avec C,D ∈ R

On notera qu’en posant A =
C

2
, on peut encore simplifier cela

(lorsque C parcourt R, A parcourt R également et vice versa) :

y(x) = Ax+ A(x2 + 1) arctanx+D(x2 + 1) avec A,D ∈ R

3 Suites Djadjacentes
Soit (cn)n∈N la suite définie par c0 = 0 et pour tout n ∈ N, cn+1 =√

1 + cn
2

.

1) Montrer que pour tout n ∈ N, cn = cos
( π

2n+1

)
./6

Démontrons ce résultat par récurrence sur n ∈ N.
— Si n = 0, alors

c0 = 0 = cos
π

2
= cos

π

20+1

donc le résultat est vrai au rang 0.
— Soit n ∈ N. Supposons que cn = cos

( π

2n+1

)
. Montrons que

cette propriété est vraie au rang n+ 1. Par définition de (cn),

cn+1 =

√
1 + cn

2
=

√
1 + cos

(
π

2n+1

)
2

=

√
cos2

(
1

2
× π

2n+1

)
=

∣∣∣cos( π

2n+2

)∣∣∣
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Or,
π

2n+2
∈

[
0,

π

2

]
, donc cos

( π

2n+2

)
≥ 0. Ainsi, cn+1 =

cos
( π

2n+2

)
. Le résultat est donc vrai au rang n+ 1.

Ainsi, le résultat est vrai pour tout n ∈ N.

On considère les suites (Sn)n∈N et (Tn)n∈N∗ définies par les relations
suivantes, pour tout n ∈ N∗ :

S0 = 2 Sn =
Sn−1

cn
et Tn =

Sn

cn

2) Montrer que les suites (Sn)n∈N et (Tn)n∈N∗ sont adjacentes. Que peut-
on en déduire ?/11

1,5 pour justifier que Sn, Tn > 0 si on s’en sert pour obtenir les
sens de variations de (Sn) et (Tn) ; 3 pour montrer que (Sn) est
croissante ; 3 pour montrer que (Tn) est décroissante ; 3,5 pour
montrer que Sn − Tn → 0 et pour conclure.

Soit n ∈ N∗. Par la question 1,

cn = cos
( π

2n+1

)
et comme

π

2n+1
∈

]
0,

π

2

[
, on a cn ∈]0, 1[. En particulier, (Sn)n∈N

et (Tn)n≥1 sont bien définies. Comme S0 > 0 et cn > 0, on montre
par récurrence immédiate que Sn > 0, et de même que Tn > 0.

Pour tout n ∈ N∗,
Sn

Sn−1
=

1

cn
≥ 1 car cn ∈]0, 1[

donc la suite (Sn)n∈N est croissante. Par ailleurs,

Tn+1

Tn
=

Sn+1

cn+1

Sn

cn

=
Sn+1

Sn
× cn

cn+1
=

1

cn+1
× cn

cn+1

Or, c2n+1 =
1 + cn

2
, donc

Tn+1

Tn
=

cn
1+cn
2

Comme cn < 1, on a
1 + cn

2
> cn, si bien que

Tn+1

Tn
< 1. D’où la

suite (Tn)n≥1 est décroissante.

G. Peltier – MPSI, Lycée Alain Fournier 9 / 13

Enfin, montrons que Sn − Tn → 0. Pour tout n ∈ N∗,

Sn − Tn = Tn (cn − 1)

D’une part, comme
π

2n+1
→ 0, on a par continuité de cos que

cn → 1, si bien que cn− 1 → 0. D’autre part, (Tn) est décroissante
et positive donc 0 ≤ Tn ≤ T1 : la suite (Tn) est bornée. Ainsi,
Tn(cn − 1) → 0. On a donc bien montré que les suites (Sn) et (Tn)
sont adjacentes.

On en déduit qu’elles convergent vers la même limite.

3) Montrer que pour tout n ∈ N, Sn = 2n+1 sin
( π

2n+1

)
./6

Montrons le résultat par récurrence sur n ∈ N.
— Pour n = 0, c’est clair car{

S0 = 2

20+1 sin
( π

20+1

)
= 2 sin

π

2
= 2

— Soit n ∈ N. On suppose le résultat vrai au rang n. Montrons-le
au rang n+ 1. Par définition de (Sn),

Sn+1 =
Sn

cn+1

=
1

cos
(

π
2n+2

) × 2n+1 sin
( π

2n+1

)
par la question 1 et l’hypothèse de récurrence

=
1

cos
(

π
2n+2

) × 2n+1 sin
(
2× π

2n+2

)
=

1

cos
(

π
2n+2

) × 2n+1 × 2 cos
( π

2n+2

)
sin

( π

2n+2

)
= 2n+2 sin

( π

2n+2

)
Donc le résultat est vrai au rang n+ 1.

Finalement, on a Sn = 2n+1 sin
( π

2n+1

)
pour tout n ∈ N.

4) En utilisant le fait (admis) que lim
x→0

sin x

x
= 1, en déduire la limite de

(Sn)./5
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Comme
π

2n+1
→ 0 et lim

x→0

sin x

x
= 1, on a par composition de li-

mites :
sin

(
π

2n+1

)
π

2n+1

→ 1

ce qui équivaut à
1

π
2n+1 sin

( π

2n+1

)
→ 1

ou encore
1

π
Sn → 1

Ainsi, π × 1

π
Sn → π, ou encore Sn → π .

4 Densité de Z[
√
2] dans R

On note D l’ensemble des nombres réels de la forme p+q
√
2 avec p, q ∈ Z

(cet ensemble se note aussi Z[
√
2] mais on le notera D dorénavant).

L’objectif de cet exercice est de montrer que D est dense dans R.

1) Montrer que pour tous x, y ∈ D, les nombres x+ y, x− y et xy sont
éléments de D./2

Soit x, y ∈ D. Alors il existe p1, q1, p2, q2 ∈ Z tels que x = p1+q1
√
2

et y = p2 + q2
√
2. Dans ce cas,

x+ y = (p1 + p2)︸ ︷︷ ︸
∈Z

+(q1 + q2)︸ ︷︷ ︸
∈Z

√
2

donc x+ y ∈ D. On montre de même que x− y ∈ D. Enfin,

xy = p1p2 + 2q1q2︸ ︷︷ ︸
∈Z

+
√
2× (p1q2 + p2q1)︸ ︷︷ ︸

∈Z

donc xy ∈ D.

2) Soit u =
√
2− 1. Montrer que pour tout n ∈ N, on a un ∈ D./1,5

— Si n = 0, alors un = 1 = 1 + 0
√
2 ∈ D

— Si n ≥ 1, alors on remarque que u ∈ D et comme le produit
d’éléments de D est encore dans D, alors un = u× . . .× u︸ ︷︷ ︸

n fois

est

dans D.

3) Soit a, b ∈ R tels que a < b. Montrer qu’il existe N ∈ N tel que
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0 < uN < b− a./3,5

Montrons que 0 < u < 1. Le fait que u > 0 est évident. De plus,
par stricte croissance de x 7→

√
x, on a :

u < 1 ⇐⇒
√
2 < 2 ⇐⇒

√
2 <

√
4

D’où 0 < u < 1. En particulier, un −−−−→
n→+∞

0. Ainsi, par définition
de la limite, en prenant ε = b − a > 0, il existe N ∈ N tel que
|uN − 0| < ε = b − a. Comme u > 0, on a aussi uN > 0, de sorte
que l’on a bien 0 < uN = |uN | < b− a.

4) Montrer que l’ensemble X =
{
k ∈ Z

∣∣∣ a < kuN
}

admet un plus petit
élément, qu’on notera m./5

X est une partie de Z. Il suffit donc de montrer que X est non vide
et minorée pour conclure.
— Pour tout k ∈ X, on a kuN > a et donc, comme uN > 0, on a

k >
a

uN
. Ainsi, X est minorée par

a

uN
.

— Montrons que X est non vide. On remarque que k =
⌊ a

uN

⌋
+1

est bien un entier et vérifie bien k >
a

uN
, ce qui équivaut à

kuN > a. Donc k ∈ X, qui est ainsi non vide.
Finalement, X possède bien un plus petit élément.

5) Montrer que a < muN < b./5

Par ce qui précède, m ∈ X, de sorte que a < muN . Supposons par
l’absurde que muN ≥ b. Alors on a{

b ≤ muN

b− a > uN

{
b ≤ muN

a− b < −uN
=⇒ a < (m− 1)uN

par somme. Or, cela implique que m − 1 ∈ X. Contradiction car
m est le plus petit élément de X. Finalement, on a bien muN < b.
D’où le résultat.

6) Conclure./3

Comme uN ∈ D et que D est stable par somme ou différence, on
a muN ∈ D. Ainsi, on a montré que tout intervalle ]a, b[ de R
contient au moins un élément de D. On en déduit que D est dense
dans R.
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5 Une primitive prohibitive
Soit f : x 7→ ln x. Pour tout n ∈ N, on note fn la fonction f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

n fois

,

avec la convention f 0 = idR∗
+
. Déterminer une primitive de la fonction

g : x 7→ 1

f 0(x)× f 1(x)× . . .× fn(x)

/12

Montrons par récurrence sur n que (fn+1)′ =
1

f 0 × f 1 × . . .× fn
. (On

rappelle que fn+1 = ln ◦ ln ◦ . . . ◦ ln︸ ︷︷ ︸
n+1 fois

).

— Pour n = 0, on a pour tout x > 0, g(x) =
1

f 0(x)
=

1

x
et f 1(x) =

ln x, le résultat est évident.

— Soit n ∈ N. On suppose que (fn+1)′ =
1

f 0 × f 1 × . . .× fn
. Mon-

trons que (fn+2)′ =
1

f 0 × f 1 × . . .× fn × fn+1
. La fonction fn+2

est dérivable par composée de telles fonctions et

(fn+2)′ = (f ◦ fn+1)′

= (f ′ ◦ fn+1)× (fn+1)′

Or, f ′ est la fonction inverse. Si on applique en plus l’hypothèse
de récurrence, on obtient :

(fn+2)′ = (f ◦ fn+1)′

=
1

fn+1
× 1

f 0 × f 1 × . . .× fn

=
1

f 0 × f 1 × . . .× fn × fn+1

La propriété est donc vraie au rang n+ 1.

Finalement, on a bien montré que (fn+1)′ =
1

f 0 × f 1 × . . .× fn
.

Ainsi, la primitive recherchée est fn+1 .

Note : en réalité, la récurrence n’est pas nécessaire, un raisonnement
direct aurait permis de conclure. Mais la récurrence permet de voir
que cela fonctionne pour n = 0, au moins.
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